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B O U N D A R I E S  OF T H E  I N I T I A L  M E L T E D  A R E A  

OF A S E M I C O N D U C T O R  F I L M  F O R M E D  BY F L O A T I N G - Z O N E  M E L T I N G  

V. I. Yakovlev UDC 532.522 

Stationary hydrodynamic and temperature fields near the upper triple point of the floating- 
zone melting process are analyzed. Regularities determining the angular position and shape of 
the initial melted area as functions of thermal conditions on solid and liquid surfaces in the 
immediate vicinity of the triple point are established in the form of four analytical relations. 

1. The floating-zone technique employing high-frequency currents of a plate inductor was described, as 
applied to semiconductor materials, for instance, in [1], where results of a numerical study were also reported. 
The theoretical investigation of this process involves a number of difficulties, in particular, those resulting 
from unknown interacting boundaries involved in the problem. The goal of the present work is to elucidate 
regularities that relate local (near the triple point) geometric parameters of the unknown boundaries with 
the thermal conditions on them. 

We consider a stationary planar statement of the problem schematically represented in Fig. la. The 
solid phase (polycrystal) shown in this figure as a dashed area travels downward with a velocity v0. As the 
solid phase passes through the boundary %, it transforms into a melt, which drains down forming a film 
with a free boundary "/l; the boundaries % and "7t are unknown (the subscripts s and l here refer to the solid 
phase and the melt, respectively). The problem is considered in the vicinity of the upper triple point of the 
floating-zone refining procedure [1], where the interface % between the phases and the free surface 7t cross 
the vertical plane boundary of the polycrystal 7- It should be emphasized that the melt film was not modeled 
numerically in [1]. 

In the experiment, the sample melts due to high-frequency currents generated by a plate inductor. In 
the present theoretical statement of the problem, the inductor is not considered, and its action is replaced 
by surface heat release and magnetic pressure. The thermal power supplied to a unit area of the polycrystal 
and the melt is set in the form of the expansions 

~/~s = IV(0) -4- HT(1)~s -~- W(2)F2"'s -,s + " ' ' ,  "~Vl = l~l'~/(0) -t- I'Vl(1)~l "4- }V/(2)~ 2 "4- . . . ,  (1.1) 

where (s is the distance from the triple point O to a point at the solid surface and ~z is the distance along 
the free surface. 

In the problem under study, we have to find the hydrodynamic and temperature fields in the melted 
film, the temperature distributions in the polycrystal, and the positions and shapes of the boundaries % and 
7t in the vicinity of the triple point O as functions of the parameters W (~ W (1) . . . .  that characterize the 
heat flux toward the boundaries. In the hydrodynamic part of the study, thermal convection is not considered 
(i.e., the buoyancy forces are ignored); as a result, the overall problem splits into purely hydrodynamic and 
thermal problems. The density p, specific heat capacity c, and heat conductivity A in a small vicinity of the 
point O are assumed constant, and the Stokes approximation is used. 
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It is convenient to treat  the problem using two polar coordinate systems ( r l , a l )  and (7`2,a2), whose 
origins lie at the points O1 and O2 (Fig. lb). The positions of these points relative to the boundary 7 and 
triple point O are described by angles C; and 3 and radii R1 and R2, respectively. From Fig. lb, the following 
formulas that  relate the coordinates of the center 02 and those of an arbitrary po in t / l i  can be derived: 

x(02) = -R2  s in3  = - [ r 2  s i n  ( 3  + a 2 )  - ri sin all, 

y(O2) = R2 cos/3 = RI -- rl cos ol  + 7"2 cos (:3 + ct2). 

From here, we have 

7"1 = V/R12 -}- R 2 -t- 7 ,2 - 2R1R2 c0s ]~ Jr- 2R17`2 cos (~ Jr- G2) - 2n27"2 c0s ct2; (1.2) 

-R2  sin~ + r2 sin (13 + o2) 
tan al  = R1 - R2 cos/3 + r2 cos (/3 + a2)" (1.3) 

Tim coordinates of the point at the boundary 7 are given by the following formulas: 

1 ai 2 + ; (1.4) cosc; _ R i _ R x a l t a n c p + R i ( l + 2 t a n 2 c ; ) ~  . . .  
7`l,(ai) -- Ri COS(C; -- a l )  

sin Ol ( 1 sin 
- R,  - - -  4 +...). (1. t 

~ = R1 cos(c; - a i )  \cosc;  cos-~ C; 

The unknown boundaries in the vicinity of O are given by the expressions 

%: "is = R i  + R i K s a 3 i  + O(ai4); (1.6) 

7l: 7̀ '21 = R2 + R 2 I Q a  3 + O(a4~). (1.7) 

Hence, ~? is the angle between the tangent line to the interface between the phases at the point O and the 
solid boundary, t3 is the wedge angle at the initial point of the melted film, and RI and R! are the curvature 
radii of the boundaries % and 7l, respectively. The deviation of these boundaries from perfect circumferences 
is taken into account by the second terms in the right-hand parts of Eqs. (1.6) and (1.7), where Ks and/x'l  
are some indefinite constants. 

2. The hydrodynamic problem for the stream function/P(ri ,  a l )  and pressure p ( r l ,  a l )  is given by 
the equations 

zXA~(rl, e l )  = 0; 

[lrl cq/X~0al 0Ar ] g r a d p ( r i , a i )  = # . -  er~ - e~l  4 - p l 9 .  V -- 

(2.1) 

I 0r  0~ 
rl Oal er, Or1 e~l '  (2.2) 

where # is the dynamic viscosity, 9 is the free-fall acceleration, and eT1 and ea i are the corresponding unit 
vectors, and also by certain boundary conditions. 
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At the boundary  %, the mass flux is constant and the tangent velocity is continuous. Hence, the 

velocity of the melt at the boundary % is 

v ~ = v0 - (1 - ~5)(v0- n ) n ,  (2.3) 

where n is the unit vector of the normal directed out of the solid phase into the melt and/5 = Ps/Pt is the 
ratio of the densities of the two phases. The difference between the velocity of the liquid at the boundary  
7s and the velocity v0 is caused by the change in the density of the substance during the phase transition. 
Since for boundary (1.6) we have 

n ~ = [1 - ( 9 / 2 ) ~ : ~  + 0 ( ~ ) ]  ~r, + [ - 3 K ~  + O ( ~ ) ]  ~ , ,  (2.4) 

condition (2.3) can be used at the boundary  rl  -= R1. It can be represented as an expansion in terms of 

powers of c~1: 

Vrl r,=R1 = ~Vo sin ~ --/~v0o~l cos ~ -- v0[(1/2)cSsin ~ + (1 --/5)3Ks cos ~]a~ + O(a3) ,  

va~ r~=R~ = -v0  cos ~ - voal  sin ~ + v0[(1/2) cos ~ + (1 - tS)3Ks sin ~]a 2 + O(a3). (2.5) 

At the free boundary  7t. which is a streamline passing through the triple point, the kinematic condition 

r ~, = ~[r2t(~2), ~2] = ~',(~2) = const 

is satisfied, which, for a local solution, is equivalent to the condition 

dy).(a2) a2=0 = 0, d2y)*(a2) ~,=0 = 0 . . . .  (2.6) 
da~ da~ _ 

(subsequent approximations are not used). The dynamic conditions of continuity of the stress-tensor compo- 

nents are also valid at this boundary: 

an,, ~l = - (P0 +pro) ,  ant  -,z = 0. 

Here P0 is the external pressure, constant over the surface, that  also includes surface tension and Pm is the 
magnetic pressure (which is not always constant).  It is assumed that  electromagnetic forces have no tangent  
components,  and the tempera ture  dependence of the surface tension is ignored. Since 

finn = O'rrnr "}- aaC~na '~ 20"ranrna,  O ' n r  = - -  - -  r t a ) ,  

and nr and na are given by a formula obtained from (2.4) with a l  and Ix's replaced by a2 and Kt, the above 
dynamic boundary  conditions can be transferred onto the circumference r2 ~- R2 and be represented in the 

form 

aar - (aaa - Crrr)3Kta 2 = O(a3); (2.7) 
r 2 = R 2  

~r~ - 6 ~ z ~  ~=a~ = - ( ; 0  + ; ~ )  ~ -a~ -  (2.8) 

The components of the stress tensor entering relations (2.7) and (2.8) can be expressed in terms of the stream 

function and pressure in the melt: 

crrr -= --P + 2P ~r2 ~'2 ~-2~2 ' arm-=-# Oct2 Or---~+r2~r2] ,  (2.9) 

1 0~-~ + 1 ~0~,~ ( 
~ = - p + 2 . ~  r2 o ~ 2 0 ~  --O~2Jr~ " 

We consider the local solution of the hydrodynamic problem in the form of an expansion in terms of 

powers of a l :  
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~ ( r l ,  0~1) - ~)o(rl) § ~l(rl)oL1 § ~2( r l )~ l  2 § . . . .  
(2.10) 

p(rl, o~1) -~ p0(rl)  + p l ( r l ) a l  § p2 ( r l ) a l  2 + . . . .  

I t  should be noted that  the fourth-order system of differential equations for the functions gzi(rl) which 

is obtained by subst i tut ion of (2.10) into Eq. (2.1) is not given here since, to determine the local behavior of 
the solution, only several first terms in the expansion in the vicinity of the triple point are required: 

~0(rl)  = cO § W0(R1)(rI - R1) § (1/2)~;0'(Rl)(rl - R1) 2 § . . . .  

g)l(rl) ---- ~'I(R1) § r  - R1) § (1/2)r - R1) 2 §  

(co is a constant).  These terms can be found from the boundary  conditions. From condition (2.5), we have 

wl(R1) = RltSV0 sin~ z, 2~32(R1) = -RltSV0COS~ 

3'~3(R1) = -R:vo[(1/2)~sin  ~; + (1 - ~)3I(s cos p], (2.11) 

'@~)(R:) = v0cos~,  y)i(R:) = vos in~ ,  ~'~_(Rl) = - v o [ ( 1 / 2 ) c o s ~  § (1 - tS)3tCssin~]. 

The  first of the kinematic conditions (2.6) at the free boundary  yields the relation 

oe 
- -  ~ ( 0 )  + o,~ 0 

Or2 0 ~ = O. 

the derivatives are calculated at the point r2 -- R2, a2 -- 0. Since Here the subscript  0 shows tha t  

(dr2Jda2) o = O, the requirement 

Oct2 0 = 0 (2.12) 

arises. In a similar manner,  from the second condition of (2.6) and in view of the condition (d~r'2i/da~) o = 0, 

we have 
0 2 r 

0 = O. (2.13) 

Stream function (2.10) is set in variables (rl and al) [see (1.2)-(1.5)]. Let us use formulas (1.2) and 

(1.3), and derive some corollaries of requirements (2.12) and (2.13). From (2.12), it follows tha t  

- r  (RI)R2 sin 3 + ~;'1 (R : ) / )  cos 3 = 0. 

w h e r e / )  = R2/R: ,  which, in view of (2.11), results in the first condition, 

tan 3 = ~tan ~ (2.14) 

among those governing the geometry of the liquid film. The relation between the wedge angle 3 and the 

deflection angle of the tangent line to the interface from the vertical gives the law of refraction of streamlines 

at the interface for the streamline passing through the triple point. 
In a similar way, from (2.13) the relation 

r  sin 2 3 + (1 -/5)v0(cos ~ cos2/3 - sin ~ s i n  2/3) - v0(cos c; cos N + tSsin ~ sin 3) = 0 (2.15) 

results, which contains the second-order derivative ~$t(R1). 
We consider now the dynamic boundary  conditions. From the zeroth approximat ion for condition (2.7) 

crar o -- 0, taking into account (2.13), we obtain 

Or~ R2 
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In view of (1.2), (1.3), and (2.11), this condition can be rewritten as 

~ ( R 1 ) R 2  cos 2 fl +/~(1 - fi)v0(cos p sin 2 fl + sin ~ sin 2/3) - v0 (cos ~ cos/3 + fi sin ~ sin fl) = 0. 

Adding together the above equality and (2.15) and taking into account that,  according to (2.14), cos ~ cos/3 + 
sin ~ sin fl = cos p / c o s  fl, we obtain the second-order derivative ~'~(R1) that supplements conditions (2.11): 

~b~'(R1)R2 = [-/~(1 - iS) cos F + 2 cos • /cos fl]vo. 

Substi tut ing this expression into (2.15), we obtain a second important [along with (2.14)] relation, 

cos 22 cos ; (2.16) 
/~(1 - 15) = cos(w + 22) cos d '  

which gives the ratio of the curvature radii for the unknown boundaries of interest. Here, it is pertinent to 
note that  the above relation is rather universal. The value o f / )  does not depend on the constants I(8 and 
Kl, which enter (1.6) and (1.7), and also on the conditions at the free boundary, except for the conditions of 
absence of external shear stresses at the free surface of the melt. Note also that, to obtain (2.16), one has to 
take into account the change in the density during the phase transition. 

The zeroth approximation of boundary condition (2.8), 

1 0~' 1 029 , Pm O' 
~r~ 0 = - P 0  + 2 # (  R2 0a2 0 + R2 0r, ,0a~ 0) = - P 0 -  

simplified using (2.12), after calculation of the second derivative leads to the following expression for the 
pressure in the liquid at the triple point: 

P o = Po + Pm o + pro sin 2~ 
R2 cos (p + 23) cos fl" 

The pressure distribution in the vicinity of this point is described by Eq. (2.2). 
Consideration of the first approximations for the dynamic boundary conditions (2.7) and (2.8) together 

with the kinematic condition 

daO. 
da 3 a2=o = 0 

allows us to determine the values of tile derivatives ~ ' ( R 1 )  and c'~(R1) and establish the relation between 
the parameters Ks and IQ, which characterize the deflection of the boundaries of interest from exact cir- 
cumferences with the radii R1 and R2, respectively. A simple "universal" relation (2.16) was obtained for / ) ,  

whereas the relation between Ks and IQ is too cumbersome - -  it contains the parameter (dpm/da2) o that 

characterizes the effect of external conditions and, for this reason, this relation is not given here. 
3. The thermal part  of the problem is described by heat-conduction equations, which in the coordinates 

(rl, a l )  have the form 

AO~ = P(S)[ OOs s i n ( p -  a , )  1 00____ A cos (~z-  a l ) ] ;  (3.1) 
kOrl rl  Oal J 

p(O ( 1 0 ~  OOz 
/kO 1 = - ~ 0  \ ~  1 CgOZ 1 Or I 

I 0v, 00z~;} 
(3.2) 

r I 0 r  1 0Oq 

A _  1 0 (  0 )  1 0 2  p ( s ) _ p s c ~ v o  p(O=PtCtVo 

Here Os and 8z are the excess temperatures of the solid and liquid phases over the melting point To. 
The boundary conditions can be written under the assumption that the heat transfer from the surface 

is radiative and the heat supply rate is given by relations (1.1). The expression for the radiative heat flux, 
~cro [(To + 0) 4 - T. 4] (no is the Stefan-Boltzmann constant), after linearization acquires the form As(Os + Os.) 
or Al(0t + 01.) for the polycrystal or the melt, respectively. Here As = ~sao(To + Ts . ) (T  2 + T2s,) and Al = 
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r + TI.)(T~ + TZ2.), 0s. = To - Ts. and 0/. = To - T/. are constants, and T. and ~ are the ambient 
tempera ture  and the emissivity, which, generally speaking, are different for the polycrystal and for the melt. 
Thus, the temperature  boundary conditions are 

- -  at the boundary %: Os = O, 0z = 0, and Az(OOz/On) - As(OO~/On) = psVon[Qo + (cz - cs)To] (Qo is 
the specific melting heat); 

- -  at the boundary 7t: Al(OOt/On) + Az01 = I$~(~) - Al0~,; 

- -  at the boundary ~/: As(OOs/On) + AsOs = I$~(~) - AsOs,. 
(Note that ,  in the above form, the boundary conditions also admit other heat-exchange mechanisms, apart  
from the Joule heating and radiative heat release considered here.) The boundaries % and 7z are given by 
relations (1.6) and (1.7), We transfer the corresponding boundary conditions onto the circumferences and 
rearrange them with indication of a reliable term of the expansion in terms of powers of the small angle Ctl: 

00.~ R,/s D = O(34); (3.3) (0~ b-7]'rl ,-,=~, + 

001 RIK~al 3) ,-,:R, = O(314); (3.4) (0,+~ 
Az OOt OOs OOt OOs "~ 3Ks 21 

~ r l - a ~ O T t . t  (al  A ~ - -  ~ a  1 -- ~O'1 0~1 ) RI J r,=R, 

I sin~)o~] + 0(4); (3.5) = psvoQ[s in~-o : l  cosg~ § (3KsCOSg~- -~ 

( OOz 100t 3Kla2) + AlO,] T2=R?I'V/(~ AlOl.-IlS(t)R2a2+"/'(2)~ O(a23). (3.6) [At \O-rr2 R2 0a2 v* l J t2u2  -~ 

In relation (3.5), we have O = Qo + (cz - es)To. For the boundary y, the unit vector of the normal is 

n = c o s ( ~ -  a l )e~l  + s i n ( ~ -  a l ) ea~ ,  

and the corresponding boundary condition acquires the form 

As [OOs 1 OOs ] 1 COS(eft--dr1)--~----- sin(~--oq)j +As0sj = ~(~s)-  AsOs, (3.7) [~rt 7"!. 00~1 rx=rt* (ctt) 

[see also (t.4) and (1.5)]. 
We search for the local solutions in the form 

0 s ( r l ,  OZl) = t 0 ( r l )  -1- t l ( r l ) c t l  + . . . ,  0 / ( r l ,  oq )  = 80( ' r l )  -Jr- 81 (T1)Ctl + 8 2 ( r l ) o q  + . . . .  (3.8) 

For two extra conditions [in addition to (2.14) and (1.16)] required to determine the parameters ~, 8, R1, 
and R2, which specify the unknown boundaries % and ~/l, it suffices to determine the zeroth expansion terms 

of Eqs. (3.1) and (3.2): 

~(rl)@~ltrO(rl)+ 2-~,2(rl):p(s)[ffo(rl)sin~-!tl(rl)cos~]; (3.9) 
r 1 rl 

,, 1 2 P(l) [ !  ,l(TI)8;(I.l)_ ~1~[~;(T1)81(r1)]. (3.10) 
~o("~) + ~;(,'~) + ,-~ ~2(~)  = vo ~,'~ 

Boundary conditions (3.3) and (3.4) yield the relations 

to(R1) = tl(R1) = t2(R1) = 0, s0(R1) = Sl(R1) = s2(R1) = 0. (3.11) 

From the expressions for the zeroth and first terms of the expansion of boundary condition (3.5), we obtain 
~ 

),,Jo(R~) - ~r  = p ~ o Q  sin~; (3.12) 

~z~ (R~) - ~ t l  (R~) = - p s i 0 0  cos ~. (3.13) 
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In order to obtain the zeroth and first terms of expansion (3.6) in terms of powers of the variable 32, we have 
to use the geometric relations rl(r2, 32) and al(r2, ~2) [see (1.2)-(1.5)]. These expansion terms, in view of 
(2.10) and (2.11), yield the equalities 

)~Jo(R1) cos/3 = 14~ (~ - At0l.; (3.14) 

AlJo(R1) sin/3[(2/) - P(l)R2~sin;)cos/3 - 1 - (Az/)~I)R2] + Alsi(R1)Rcos2/3=-R2H/) (1). (3.15) 

From boundary condition (3.7), with allowance for geometric relations (1.4) and (1.5), we obtain the equalities 

A /  O0s 1 0Os As 
s t c ~  3-~ + s in~  R--7 oa--7 + ~ os) 0 = %(~ - as~  

r i o2os 
as LCOS;t-0-;~C~ A1 + - -  020s 1 0 0 s  ; ( R 1 031 A1 + R10rl Oa--------~ A1 cOrl Oct 1 R10al )  + sin 1 OOs 1 020s 

l O-'0s o0sh ~ ( o 0 s  ooshl ~ R1 ~V(1 ) 
+ RI 0321 + ~rl) + /~s \Orl A1 + 0 C ~ l ]  j = C O S ;  s , 

wherefrom, using (3.8), (3.9), and (3.11), we have 

~/o(R~) c o s ;  = W~ (~ - Ases.; 

AI = -R1 tan ; ,  

(3.16) 

As 1 cos2~; , (R1)} R1 
; j t~(R1)  + c o s ;  - c o s ;  As{ [ s in ; (2 -  P(S)Rlsin;) - -~s Ri tan t 1 = ~ I V  (1). (3.17) 

Substituting the expressions t~(R1) and S~o(Rl) given by (3.14) and (3.16) into (3.12), we obtain the first 
condition required for the unknown boundaries to be determined: 

W (~ - At01.  l ' l~  ~ - A s 0 s ,  
psvo(2 sin 

cos/3 cos 

The second condition can be found by substituting the value of )~lS~(R1) found from (3.14) and (3.15) for 
cos2~ 7 ~ 0 and the value of Ast~(R1) found from (3.16) and (3.17) for c o s 2 ;  # 0 into expression (3.13). From 
here, we obtain 

1 N 
R 2 -  p(z) D '  (3.18) 

where 

g = / ~  cos 2~[psvoQ cos ; + (2 sin c2/cos 2;)(~ '~ (~ - As0s.)] + (~l/(~ - At0l.)(tan/3 - 2/~ sin ~); 

~(1) cos 2/3 W (1) 
D = ~ + cos 2---~ p(t) 

A1 (wl  - a,e, .)tan 3 ( s i n s  cos ;  + 

cos.(sin2P<s  + (w; ~ - Ases,) ~ ~ ~ + ~ tan 

and 1 / P  (l) = Az/(plczvo) is a dimensional quantity tha t  determines the linear scale. For instance, for silicon 
we have Pl ~- 2-bg/cm a, cl ~- 0.91 J / ( g .  K), and At ~- 0.67 J / ( c m .  sec. K), and for v0 = (2/3) �9 10 -2 em/sec, 
we obtain i / p ( 0  ~ 50 cm. 

For cos2/3 = 0, the value of R2 can be found from (3.14) and (3.15), whereas for c o s 2 ;  = 0 the 
curvature radius R1 can be determined from (3.16) and (3.17). Note that  these values can also be obtained 
from the general formula (3.18). 

Below, we write the main terms of the expansion for the temperature of the polycrystal at the boundary 
7 and for the temperature of the melt surface (for ; > 0), which follow from (3.8), (3.14), and (3.16): 
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0 ~ , = 0 ~  = W} ~  Cs tan ~ + O(~s2), 

0z "~L = 0l r2=n2 Vv) (~ - Al0u 
-- Al ~l tan 2 + O(~) .  

Note that  the required negative values of Os at the boundary ~/are available only under the condition 

W (~ - AsO~. > 0, (3 .19)  

for which the amount of heat released at the polycrystal surface exceeds the amount of heat that  leaves it (in 
the main expansion term). 

4. We rewrite the results obtained, introducing the dimensionless parameters for the energy quantities: 

q~O) _ }V(s~ AsOs. q}0)_ tt~ (0) -  AlO1. q}l)_  II'/(1) q ! l ) _  t i l  1) 

psvoQ ' psvoQ ' P(l) psvoQ P(l) psvoQ 

The dimensionless quantities q}0) and q.~0) characterize the released heat minus the heat lost for heat exchange, 
immediately at the surface of the melt and at the solid surface, near the point O, respectively. The parameters 
q}l) and q(1) determine the rate of heat-release changes with distance from the triple point toward either the 
melt or the polycrystal. 

Thus, we have the formulas 

tan/3 = t i tan p, (4.1) 

q}0) q(0) 
= sin 4, (4.2) 

cos ~ cos 

which relate the angles ~ and 3 with the energy parameters q}0) and q~0). From (3.19) and (4.2) it follows 
that,  for a stationary process for ~ > 0 to exist, the condition 

0 < q~0) < q}0) 

should be satisfied. Using (4.1), we can represent expression (4.2) in the form of a relation that  yields the 

required value of q}0) for given q(0) and ~: 

q}0) = (1 +/5 2 tan 2 cy)-l/'~[q!~ + sinai .  

The relations presented below give the curvature radius R1 of the interface between the phases and that  of 
the free surface of the melt R2, i.e., the shape of the initial melted film: 

/~ _ R2 _ ___L1 cos 2~ cos ~.  (4.3) 
R1 1 - /5  cos(p + 2/3) cos 3 '  

1 t) cos 2Z(cos + q!~ sin  /cos + q}~ 9 - 2 sing) 
(0)~,, . , , (4.4) 

R2 = p(0 q}~) _ q}0)tan ~(sin~cos ~ + Xz) + qs r%sm- p + Xs tan ~) cos 2~/  cos 24 

where Xl = Az/(AlP(l)), Xs = As/(AsP(S)), and /5 = p(s)/p(1) are dimensionless parameters, and q}s 1) = 

q l) + q!l) cos 29/cos2  
The dependence /~(~) specified by relations (4.3) and (4.1) for fixed ti = 0.91, which corresponds to 

silicon, is shown in Fig. 2. In the interval 0 < p < 7r/2, there is a segment ~1 < 4 < ~2, where/~ acquires 
negative values. [The end points of the segment are determined by the conditions cos(p + 29) = 0 (from 
here, we have tan 41 = (2t5 +/52) -1/2) and cos 2L~ = 0 (tan P2 = 1//5).] Negative values of/~ correspond to a 
configuration that  differs from the configuration depicted in Fig. lb, since the curvature centers O1 and O2 
lie on different sides of the boundary %. (This statement rests on an independent solution built on a modified 
configuration; in this case, the solution procedure is analogous to that  given above.) For the fioating-zone 
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technology, of importance is the case where the free surface of the melt has a boundary similar to that  shown 
in Fig. lb, i.e., R2 > 0. [As follows from (4.4), for all ~, r q~0), and q~0) that  satisfy conditions (4.1) and 

(4.2), by means of the free parameters q~l) and qO), the quantity R.~ can be adjusted so that  its positiveness 
is ensured.) In this case, negative/~ correspond to the geometry in which it is the center O1 that  lies on the 
other side of the boundary %," i.e., outside the polycrystal. Thus, as follows from the dependence/~(~y), the 
initial part of the melted film may acquire one of the shapes shown in Fig. 3. (Here, it is the quanti ty ~ << 1 
that  is positive.) The transition from one shape to another occurs at some critical angles ~, namely, at the 
above values ~Yl and ~2. 

It should be noted that  only in a small vicinity of the value ~ = ~2 do we obtain R2 << IRll- For the 
floating-zone technology, this condition is obviously a necessary one for the stability of the initial part  of the 
melted film, which can be ensured by surface-tension forces. For ~z = P2 (cos 2/3 = 0), from (4.4) and (4.3) 
we have 

1 q~0) 
R2, = 

pq) q~l) _ q~O)((v~/2)~/( 1 +/~2)--1/2 + Xl)" 

Hence, for R2. << 1 / P  q) to be obtained, it is required that  q~l) >> q~0) or, in other words, the heat-flux 
density at the surface of the melt should grow rather rapidly with distance from the triple point. 

This work was performed within the Integration Project No. 36 of the Siberian Division of the Russian 
Academy of Sciences. 
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